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ABSTRACT
Little is known about the feasibility of virtual staining for in-
dustry applications such as high-throughput screening (HTS).
We provide a thorough analysis of the usability of image-to-
image translation for the virtual staining of label-free bright-
field microscopy images of live cells, using a pool of more
than 1.6 million images across six lung, six ovarian and six
breast cell lines consisting of paired bright-field, cytoplasm,
nuclei and DNA-damage stains. To our knowledge this is the
first time an analysis of virtual staining has been performed on
three levels; pixel-based, biological-feature based, and deter-
mining if virtual staining can reproduce drug-effect. Our re-
sults reveal that while virtually stained nuclei and cytoplasm
images often consistently and faithfully reproduce the infor-
mation found in fluorescence microscopy, virtually stained
images of DNA-damage are usually less accurate.

Fig. 1: Ground truth fluorescence vs. virtual stains for
a high cell density region of interest (ROI) in a lung cell
line. SSIM and PSNR for the ROI as well as prediction vari-
ability maps (VMAP), computed as the pixel-wise standard-
deviation of multiple predictions generated from the same
bright-field input using dropout [1]. Each VMAP is nor-
malised by the standard-deviation of the ground truth fluores-
cence image. The general shape of nuclei and cells are repro-
duced well. Despite virtual staining appearing plausible, cer-
tain biological features; DNA-damage spots and cytoplasm
intensity, show clear differences and subsequent high predic-
tion variability. Examples shown at yellow arrow heads.

1. INTRODUCTION
High-throughput screening (HTS) is a process used in drug
discovery that enables a large number of compounds to be
tested simultaneously for drug effects on cell cultures. Fluo-
rescence microscopy is the standard tool in HTS for detecting
drug effects on cellular structures [2]. By covalently binding
different fluorescent dyes to biomolecules (fluorescent stain-
ing), it enables biological structures to be simultaneously re-
vealed in different parts of the optical spectrum, with each flu-
orescent dye captured in a separate image channel. However,
fluorescent staining requires expensive, specialist machinery,
the process is time-consuming and the number of parallel flu-
orescent dyes is restricted by spectrum saturation [3].

If we could extract the same information from unstained
samples, then we could drastically reduce the resources re-
quired to image drug effects and enable new multiplex imag-
ing combinations. Our approach to designing such a method
is to explore image-to-image translation (I2I) [4] – a machine
learning (ML) technique – to translate unstained bright-field
microscopy images into multiple fluorescent microscopy
channels, each corresponding to a structure of biological in-
terest. Such a system could, in principle, generate virtually
stained fluorescence images from fast, low cost, non-invasive,
and widely available bright-field images. These could then
potentially be used for HTS or other applications.

Virtual staining using I2I has been widely explored. Pre-
vious work [3, 5] used approaches based on a regression loss.
This approach has been outperformed in other domain ar-
eas by other methods such as generative adversarial networks
(GANs) [6, 7, 8], which have led to dramatic performance
improvements on natural image datasets [9, 10] and other
bioimaging applications [11]. Existing approaches to the
evaluation of virtual staining have been focused on pixel-level
discrepancies and have not yet determined the extent to which
virtual staining accurately represents the biological informa-
tion found in the fluorescence images. As a consequence, the
true applicability of virtual staining for drug discovery appli-
cations such as HTS is still in doubt.

Here, we will for the first time, systematically investigate
which biological features are consistently reproduced accu-
rately in virtual staining and which are likely to be lost, open-
ing the door to potential wide-spread future applications in
drug discovery. To achieve robust quantitative results, we
leverage a dataset containing more than 1.6 million individ-
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ual high-resolution images from six lung, six ovarian and six
breast cell lines consisting of paired bright-field and fluores-
cent channels showing cytoplasm, nuclei and DNA-damage.

We evaluate our virtually stained images using three levels
of analysis. In level 1, we consider the established pixel-level
metrics (SSIM [12], PSNR [13]) and examine the variability
in virtual staining predictions. In level 2, we use the software
Columbus [14] to compute 50 morphological, textural and in-
tensity features that are frequently used in HTS. We compare
the results between the real fluorescence channels and those
obtained for different virtual staining. Finally, in level 3, we
compute a common HTS assay quality metric, robust Z prime
(RZ’) factor [15] on the feature values obtained from real and
virtually stained images.

We find that to determine the usability of I2I in practi-
cal applications, choosing the right quality metric is essential.
Despite reasonably high performance for SSIM and PSNR
across all channels, these scores do not give a good indica-
tion of whether or not the virtually stained channel could be
used for HTS instead of the real fluorescence channel. Con-
sistently the virtual nuclei and virtual cytoplasm accurately
reproduce the biological feature values of the real fluorescent
images and do not lead to substantial changes in RZ’ factor.
However, we find that the virtual DNA-damage channel, even
though it is visually convincing, does not reflect the biological
information contained within the real images. These results
suggest that much, but not all information usually acquired
by fluorescence staining can be extracted from the unstained
bright-field and while virtual staining can not completely re-
place fluorescence microscopy, it can be a viable supplement.

2. EXPERIMENTS & RESULTS
Dataset: Our experiments are based on a pool of 1,631,232
individual images generated as part of a GSK HTS assay. The
data comprises 118 16x24 well plates each of which con-
tains negative and positive controls along with 10 GSK com-
pounds screened for toxicity with one of three cell types; lung,
ovarian and breast. Every well consists of 9 fields of view
each containing a bright-field and three co-registered fluores-
cent stains; fluorescein (FITC) for cytoplasm, 6-diamidino-2-
phenylindole (DAPI) for nuclei detection and Cyanine (Cy5)
for DNA-damage. Each cell type was represented by six dif-
ferent cell lines.

Training: For each cell type, three models were indepen-
dently trained to translate from bright-field to fluorescent
stain. For each cell type 30,000 bright-field and fluorescence
stain image pairs were sampled and split 70% for train, 20%
for validation and 10% for test. In addition, for each cell type,
a single plate, excluded from any training or validation sets,
was used as a test set for levels 2 and 3 of the analysis.

This work used the Pix2PixHD [7] architecture adapted
for our image resolution via rescaling. We use the same
hyper-parameters as [7], after tuning we found 3 discrimina-

tors instead of the default 2 and a batch size of 16 achieved
the best performance on the validation set. Each model was
trained for a maximum of 100 epochs using early stopping.

Level 1 - Visual Inspection & Pixel-level Performance:
Upon visual inspection (Figure 1), we find the general shape
of the nuclei and cytoplasm are represented well in the virtual
stains. However, aspects such as the position of DNA-damage
spots or the intensity of the cytoplasm are visually plausible
but incorrect. We believe the required information is simply
not contained in the bright-field channel. One way to deter-
mine the level of confidence a GAN has in its prediction is to
sample multiple solutions via dropout [16] during inference.
We used this technique to produce 400 solutions on which
the pixel-wise standard-deviation was calculated to visualise
prediction variability, i.e., lack of confidence. We find (Fig-
ure 1) the highest variability in the DNA-Damage spots and
areas of high intensity in the cytoplasm channel suggesting
high levels of uncertainty.

Our first step to quantitatively evaluate our virtual stain-
ing is to use pixel-level metrics. In contrast to previous vir-
tual staining work [3, 5] that evaluated its predictions using
the Pearson correlation between the real and virtual pixel in-
tensities, we used two well-established image quality metrics
to compare our virtually stained images to the real fluores-
cence stains. Peak signal-to-noise ratio (PSNR) [13] was se-
lected as it is sensitive to shift and scale of pixel intensities
and structural similarity index measure (SSIM) [12] because
it is invariant in that respect.

Across all cell types, virtual nuclei stain and virtual cyto-
plasm achieved very similar average SSIM scores of 0.96 ±
0.02 and 0.95 ± 0.02 while virtual DNA-damage scored 0.87
± 0.10. Similarly for PSNR; virtual nuclei and cytoplasm
achieved on average 35.2 ± 1.6 and 35.1 ± 2.8 respectively
while virtual DNA-damage achieved 34.9 ± 3.1. Compared
to the results from image restoration [17] these numbers indi-
cate good quality. However, microscopy images contain large
areas of uniform background leading to overstated pixel-level
quality. Both metrics dramatically drop when considering a
smaller region of interest with less background (Figure 1).

These results show that virtual nuclei and virtual cyto-
plasm are reproduced more accurately compared to the vir-
tual DNA-damage. Despite appearing visually plausible and
achieving relatively high performance for SSIM and PSNR,
we identify certain biological structures in this channel that
are reproduced with low confidence and differ from the real
fluorescence channels.

Level 2 - Biological Feature Representation: In HTS, the
toxicity of compounds is often evaluated by computing quan-
titative morphological, textual and intensity features for each
cell and comparing their statistics to positive and negative
controls. For I2I to be useful for HTS it must faithfully
translate biological features of interest. We utilised a Colum-
bus [14] feature extraction pipeline, designed for the original
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Fig. 2: Normalised MAE (N-MAE) between fluorescence
feature scores and each virtual staining stage for 50 bio-
logical features across all three cell types. On average the
virtual nuclei and virtual cytoplasm achieved lower N-MAE
compared to virtual DNA-damage. One nuclei, one cyto-
plasm and two DNA-damage spot features are highlighted.

HTS assay to see if these feature’s statistics are reproduced in
our virtually stained images.

The Columbus pipeline takes a complete HTS plate as in-
put. Here, we use the held out plate of each cell type that
was not used for training or validation. The feature extrac-
tion begins with the segmentation of the nuclei, which then
enables the segmentation of the cytoplasm and DNA-damage
spots. Based on these segmentation outputs the scores for
50 features are then computed from their respective channel,
see Figure 2. The feature score is computed per well by first
quantifying the score across all cells per field of view and then
averaging across all nine fields of view for all features.

To evaluate our virtual staining, we first generated fea-
ture scores from the real fluorescence channels and then intro-
duced the virtual staining in 3 stages; stage 1 involved virtual
nuclei only, stage 2 virtual nuclei and virtual cytoplasm and in
stage 3 all virtually stained channels were used. For each cell
type, feature and stage, the mean absolute error (MAE) be-
tween the real fluorescence and virtual staining feature scores
was computed over all wells. To enable the comparison and
interpretation of MAE across different feature ranges the re-
sulting MAE for each feature was normalised (N-MAE) by
the standard-deviation of the real fluorescence feature score.

Stage 1 with virtual nuclei only, achieved an average N-
MAE score of 0.22 ± 0.2. Remarkably, a large proportion
of features have produced stable N-MAE across the different
cell types. As highlighted in Figure 2 the ”Nuclei Count” fea-

ture from the nuclei channel, consistently scores the lowest
N-MAE across all cell types, verifying the qualitative obser-
vations of the virtual nuclei channel in Figure 1. The largest
errors are observed for the nuclei channel features associ-
ated with ”Nucleus Threshold Compactness %”, which mea-
sure nuclei shape at different intensity thresholds. This find-
ing aligns with the uncertainty in shape shown for the nuclei
channel in Figure 1.

In stage 2, as the virtual cytoplasm is introduced the aver-
age N-MAE rises to 0.27 ± 0.22. The increase in error is pre-
dominantly driven by features that rely on cytoplasm intensity
or cell shape. Figure 2 shows an intensity-based feature, ”In-
tensity Cell Mean” which, is not reproduced well for all cell
types and in particular for lung. The problem of incorrect cell
intensity was also visible in Figure 1.

Finally, in stage 3, when all virtually stained channels are
used we observed a dramatic increase in error for many fea-
tures extracted from the DNA-damage channel resulting in
the average N-MAE increasing to 0.63 ± 0.51. In Figure 2, we
highlight two examples of this; ”Spots Haralick Sum Variance
2µm” and ”Spots SER Edge 3.4µm” which are both measure-
ments for the texture of DNA-damage spots.

Fig. 3: Distribution of feature scores highlighted for flu-
orescence and virtual staining stages. The nuclei channel
feature distributions appear very similar, the cytoplasm fea-
ture distributions are moderately different when the virtual
cytoplasm is introduced meanwhile the two remaining DNA-
damage spot features show considerable differences when vir-
tual DNA-damage channel is used.

For each of the features highlighted in Figure 2, we show
in Figure 3 the distribution of values at each virtual staining
stage compared to the distribution of the real florescence val-
ues. For the nuclei channel feature, the virtual nuclei distri-
bution is almost indistinguishable from the real fluorescence
distribution and remains unchanged throughout. The distri-
butions of feature scores for the cytoplasm and DNA-damage
features are visually impacted when the corresponding vir-
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tual channel is introduced suggesting that any measurements
based on them are no longer reliable.
Level 3 - RZ’ Factor: In HTS assay screening pipelines
for cell damage, after biological features of each plate have
been extracted, the plate quality is checked using the RZ’ fac-
tor [15].

The method compares the feature distributions in negative
and positive control sections of the plate. The RZ’ factor is
a value in the range of (−∞ ≤ RZ ′ ≤ 1) that is computed
for each feature. A value close to 1 indicates the feature dis-
tributions are very dissimilar and that this feature provides
a potentially strong measurement for cell damage. Often an
HTS study will focus on the features with the highest RZ’ fac-
tors. A value close to 0 or negative suggests that the feature
distributions are highly similar and therefore not suitable for
measuring cell damage.

We compute the RZ’ factors and select the ten features
with the highest scores from the real fluorescence images to
compare with the RZ’ factors from all stages (see section 2)
of virtual staining. For the breast plate analysed, we found all
RZ’ factors to be negative, indicating that they are not suitable
for HTS and as such we exclude it from further analysis.

For the lung and ovarian plates the highest 10 RZ’ factors
all rely on the DNA-damage channel. Figure 4 shows remark-
ably small changes occur for many features when the virtual
nuclei and virtual cytoplasm channels are used. However, the
introduction of virtual DNA-damage leads to a substantial re-
duction in the majority of RZ’ factors, indicating that they
are no longer usable in the toxicity study. We again highlight
”Spots Haralick Sum Variance 2µm” in Figure 4 as an exam-
ple, where the drop in RZ’ factor aligns with the increases
in N-MAE shown in Figure 2 and the distorted distribution
shown in Figure 3. We see the same pattern for the ”Spots
SER Edge 3.4µm” feature in the lung cell type. However,
unexpectedly, we see an increased RZ’ factor in the ovarian
cell line as the virtual DNA-damage is introduced. One might
naively interpret this an improvement introduced by virtual
staining. However, considering the increased error for ovar-
ian and the deformed distribution in Figure 3 we believe that
this simply reflects inaccuracies in the translation that are sys-
tematically different in the positive and negative controls.

3. DISCUSSION AND CONCLUSION
Here, we have investigated I2I as a technique to extract infor-
mation from the bright-field usually requiring fluorescence
staining in HTS. Remarkably, across all three levels of our
analysis both virtual nuclei and virtual cytoplasm have con-
sistently performed well; achieving high pixel-level quality,
producing similar scores for the majority of features found in
the real fluorescence channels and leading to relatively small
changes in RZ’ factor outcomes compared to the fluores-
cence. As such, we believe that the use of virtual nuclei and
virtual cytoplasm stains as a non-invasive imaging method
could become a viable alternative to nuclei and cytoplasm

Fig. 4: Highest 10 RZ’ factor obtained with fluorescence
and the change in RZ’ factor with the progressive virtu-
ally staining stages for lung and ovarian plates. For virtual
nuclei and cytoplasm we observe small changes in RZ’ fac-
tor. However, as the virtual DNA-damage is introduced the
RZ’ factor for the majority of features plummets indicating
that these features are no longer usable for HTS.

fluorescence staining. These findings could lead to a reduc-
tion in the time needed to image these two labels and could
enable new multiplex imaging combinations.

In contrast, the virtual DNA-damage channel has con-
sistently shown relatively higher errors across all levels of
analysis and cell types. In particular, the DNA-damage spots
showed high variability and considerable losses of informa-
tion for DNA-damage features such as ”Spots SER Edge
3.4µm” and large changes in RZ’ factor compared to the
other two virtual channels. We believe it is not possible to
predict the precise spot location because this information is
not present in the bright-field image. Despite this, features
such as “Spot Count” still achieved a low N-MAE for certain
cell types as they are invariant to the precise spot location.
One limitation of this component of our analysis is its inabil-
ity to evaluate N-MAE per instance instead of averaging over
all instances per well which would help improve the accuracy
with which we evaluate virtual staining.

We saw that the use of the virtual DNA-damage channel
could lead to an improved RZ’ factor for individual features
even when the error of the feature values had increased. This
is unexpected because an increased RZ’ factor indicates a
potentially improved ability to distinguish between negative
and positive controls which should be negatively correlated
with increased errors of feature values. Ultimately, the posi-
tive correlation arises from incorrect I2I and its applicability
should be subject to further scrutiny. We hope, future work
will explore the ability of I2I models to generalise to unseen
cell types and explore uncertainty-based approaches to im-
prove virtual staining performance.
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